分,是世界级的猜想,难度很大,但对于纯粹数学的发展而言,意义却算不上多大。
不过,对于计算机数学的发展来说,却可谓是巅峰级的存在。
犹如此前徐川完成的杨-米尔斯存在性问题一般,对于数学界而言,它只是一个极其难解的微分方程,抛开在这个过程中创造的工具和其他的收获来说,解开它能得到的是一个答案。
但对于物理学界来说,它却是支撑理论物理学再度往前走的重要基石,是完成大统一理论的必经之路。
因此,会场中,站起来提问的学者相当的多。
当然,并不是所有站起来提问的学者都是大牛,也都能提出精准而又有水平的问题。
比如某位来自爱丁堡大学的博士生,就提出了个丢脸丢到全世界的问题。
「请问在第四十七页中,近似算法的运行时间和近似保证之间的权衡,平方和层次结构可以适用于指数级时间的近似算法,n表示图的顶点数r可以是任何大于1的正实数(可能取决于n),这一问题报告者是如何得到这一证明的?」
这个问题一出,大礼堂内顿
时就骚动了起来。
窸窸窣窣的交流声在宽敞无比的礼堂内交织着,不少人向这位站起来提问的博士生投去了诧异、惊讶、疑惑甚至是嘲笑的目光。
听到问题,报告台上,刘嘉欣都有些诧异的愣了一下,随即确认了一遍问题后,开口解释道「顶点覆盖、均匀最稀疏割及相关问题的适度指数时间近似算法,这并非我的证明结果。」
「如果我没有记错的话,在后续的解释中,有引用卢卡·特雷维桑教授在2018年国际数学家大会上的报告论文。」
「你可以看看引用行中的第六个,特雷维桑教授已经做了相当完备的解释。」
听到自己提了一个早已经被人解决了的问题,这位来自爱丁堡大学的博士生顿时脸色一红,细若蚊声的道了一句‘谢谢"后一脸尴尬的坐了回去。
学艺不精是一回事,勇于在报告会现场提问也是一回事,哪怕提了个错误的问题也算不上什么。
但是很显然,这种心中有了疑问,连引用论文都不会去看,也不会去事先搜索寻找是否已经有解决答案的问题,提出只会被人耻笑。
免费阅读
inf。inf